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The phenomenon of semiquantum chaos is analyzed in a classically regular double-well oscillator model.
Here it arises from a doubling of the number of effectively classical degrees of freedom, which are nonlinearly
coupled in a Gaussian variational approximation (TDHF) to full quantum mechanics. The resulting first-order
nondissipative autonomous flow system shows energy dependent transitions between regular behavior and
semiquantum chaos, which we monitor by Poincaré sections and a suitable frequency correlation function
related to the density matrix. We discuss the general importance of this form of deterministic chaos and point
out the necessity to study open (dissipative) quantum systems, in order to observe it experimentally.

PACS number(s): 05.45.+b, 03.65.Sq, 03.65.Ge, 85.30.Vw

I. INTRODUCTION

Recently the concept of semiquantum chaos has been in-
troduced in order to characterize a particular form of deter-
ministic chaos [1]. Namely, dynamical systems with both
quantum and classical degrees of freedom may show irregu-
lar behavior due to their generic coupled nonlinearities
[2—-4]. The appearance of both quantum and classical de-
grees of freedom (DOF) generally can be thought of as a
more or less valid approximation, depending on the physical
circumstances, describing a truly complex nondissipative
quantum system.

For example, the authors of Ref. [2] considered the zero
momentum (long wavelength) part of the problem of pair
production of charged scalar particles by a strong external
electric field. In this limit the problem could be reduced to a
classical oscillator interacting with a quantum mechanical
one through a biquadratic coupling; i.e., a two degree-of-
freedom system, one classical and the other purely quantum.
They represent the electromagnetic vector potential and the
charged matter field, respectively. In this case and for a
physically motivated subset of all possible initial conditions,
the dynamics can be mapped onto an equivalent completely
classical problem with two effective DOF. Their motion is
described by two coupled nonlinear second-order differential
equations, which yield regular or irregular trajectories de-
pending on initial conditions and suitably chosen model pa-
rameters. Clearly, an approximation to a purely quantum sys-
tem, a quantum field theory in fact, has been treated here and
eventually gives rise to deterministic chaos in an equivalent
low-dimensional classical system.

The latter observation presents the starting point of our
investigation of semiquantum chaos in the one-dimensional
double-well problem. It can be considered as the zero-
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dimensional limit of the scalar Higgs field model [5]. To
study the entropy production and thermalization in strong
interactions at ultrarelativistic energies a related scalar quan-
tum field theory has recently been treated in the time-
dependent Hartree-Fock approximation (TDHF) equivalent
to a Gaussian variational principle [6,7] (see also further ref-
erences therein). The resulting field equations in the long
wavelength limit, i.e., neglecting spatial variations, reduce to
a coupled pair of Hartree-Fock type equations for one-
dimensional double-well oscillators. They represent a semi-
classical approximation to the full quantum problem in terms
of spatially homogeneous fast and slow modes, respectively.
The equations for a single such oscillator will be given in
Sec. II and their solutions studied in detail in the following.

At this point it seems sufficient to state that mean-field
type TDHF quantum corrections to the classical equation for
the double-well oscillator, which behaves regularly in the
classical limit, introduce characteristic nonlinear features in-
cluding additional effectively classical DOF. They, however,
describe quantum fluctuations of the basic coordinates and
conjugate momenta. Such additional DOF are an essential
element to allow for the possibility of semiquantum chaos.
‘We recall that a classical one-dimensional anharmonic oscil-
lator, which can be described by a set of two autonomous
first-order differential equations, cannot have chaotic trajec-
tories according to the Poincaré-Bendixson theorem [1],
which rules out chaotic flow in a bounded region in two-
dimensional (phase) space.

The time-dependent variational principle [7] using gener-
alized Gaussian trial wave functions has, in fact, already
been applied in quantum chemistry for quite a while (see
Refs. [8,9] for some early and more recent work, respec-
tively, citing numerous further relevant references). How-
ever, it has only recently been pointed out that the parameters
(parameter functions in field theory [6]) specifying the
Gaussian wave functions (functionals in field theory) are
governed by a set of equations according to the variational
principle which describe an equivalent classical Hamiltonian
system [3]. It is this equivalent classical system which may
show what has been termed semiquantum chaos, even if the
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FIG. 1. The double-well oscillator potential,
1 Eq. (2), with n?=1.0,A=0.06. Also shown is a
typical classical phase space trajectory (¢p=¢p).

subset of equations belonging to the proper classical limit
(neglecting quantum fluctuation DOF) produces only strictly
regular motion. Furthermore, it is generally believed that the
full quantum dynamics obeying the Schrodinger wave equa-
tion, which is a linear partial differential (LPD) equation
(however, a functional LPD equation in field theory), is al-
ways regular (see Refs. [3,9] for further discussions on this
point). Thus, the question of quantum chaos usually pertains
to more subtle aspects of the dynamics which reflect some
traces of deterministic chaos in the corresponding classical
system [1,9], if at all.

Presently, we want to address the question instead, rather
independently of the behavior of the full quantum dynamics
or even a regular classical limit thereof, whether or how the
onset of semiquantum chaos is related to the breakdown of
the underlying semiclassical approximation. Correspond-
ingly, one may reconsider the often posed problem of
whether or where in the relevant classical phase space there
are regions in which the system can safely be or even has to
be studied using a semiclassical approach [10].

Finally, we want to draw attention to Ref. [4]. There, the
possibility of chaotic behavior without classical counterpart
is pointed out in a many-body system undergoing multiple
resonant tunneling. More specifically, an electron cloud in a
three-well heterostructure was represented by an effective
one-particle wave function obeying a nonlinear Hartree
equation. Clearly, the inherently semiclassical description
gives rise to the essential nonlinearity of the second-order
partial differential equation again. However, the authors of
this work speculate that the many-body character of the sys-
tem, i.e., infinitely many DOF already on the classical field
level, might stabilize the reported semiquantum chaos in this
case to persist even in a fully quantum treatment. This ne-
cessitates a time-dependent approach to quantum field
theory, which has not been worked out for the nonrelativistic
problem at hand to date. We will come back to this in the
final section where we discuss one possible first step beyond
our present simple double-well oscillator model in the direc-
tion of a quantum field theory, which is motivated by the
above mentioned issues [4,6]. In any case, it is gratifying that
at least for solid state heterostructures an experimental veri-

fication of semiquantum chaos seems within reach (see fur-
ther references in [4]).

Our paper is organized as follows. Section II defines the
model] and describes briefly the time-dependent variational
principle, from which we obtain our basic set of equations.
In Sec. III we present some analytical considerations and
introduce the effective semiquantum potential, which should
help to visualize the results of our numerical studies pre-
sented in Sec. IV. In Sec. V we briefly compare the semi-
quantum dynamics with exact solutions of the Schrodinger
equation and summarize our results. We point out some in-
teresting problems related to environment-induced decoher-
ence and chaotic entropy production in open quantum sys-
tems, which are left for future work. We discuss qualitatively
there, how semiquantum chaos can be reconciled with a
regular classical limit and the intrinsic linearity of quantum
mechanics, in particular.

II. SEMICLASSICAL DOUBLE-WELL OSCILLATOR

The purpose of this section is to introduce our toy model
of the simple one-dimensional double-well oscillator which,
however, will be studied in a nonperturbative semiclassical
approximation (TDHF; cf. below). As explained in the Intro-
duction, we consider this as a necessary first step towards the
study of a (3+1)-dimensional field theory [6]. The classical
action of our model is given by

1
S=fdt[5(0tqo)2—v(<p)}, (1)

with

1 A
v(@)E—§M2¢2+ 5404, 2)

and ¢= ¢(t) denotes the oscillator coordinate, which is the
analog of a scalar field, ¢=¢(x,t), in zero space dimen-
sions. Note that the potential includes a negative ‘“mass”
term ~ u?, which allows for spontaneous symmetry break-
ing in the anharmonic potential ~ ¢*. Figure 1 shows the
potential v(¢) for the typical model parameters used



53 SEMIQUANTUM CHAOS IN THE DOUBLE WELL 3125

throughout this work, u?=1.0,A=0.06 (we employ units
such that Z=c=1) together with a typical classical phase
space trajectory oscillating in one of the wells.

The Schrodinger equation following from Eq. (1) (coor-
dinate representation),

2

. 1 d
i0z¢(¢;t)=H<//(qo;t)=[ -3 Wﬂi(sv)] P(esr), (3)

is linear in the wave function . Thus, there is no mixing of
its Fourier components,

©

o= are e, @

which allows a trivial decomposition of the full quantum
dynamics with respect to fast and slow modes. This explains
why at first sight one does not expect quantum chaos, no
matter whether the corresponding classical system behaves
regularly or not, and why many efforts have been made to
find traces of classical chaos in the fully quantized system
(see, e.g., Refs. [1,9,11] and further references therein).

We remark here that the situation for the field theory func-
tional Schrodinger equation, despite its apparent similarity to
Eq. (3), seems even more complex, since the relation of the
physical (most commonly employed single-particle) observ-
ables to the wave functional is more complicated in this case.
This is exemplified already by the quantum Brownian mo-
tion of a single particle interacting with a quantized electro-
magnetic field, phonon, or other radiation field [6,12,13]; cf.
Sec. V.

Presently, we do not follow the established routes of in-
vestigations into quantum chaos. Rather, we study chaotic
behavior generated in the semiclassical regime even for clas-
sically regular systems, such as our model defined by Egs.
(1) and (2). Before we derive the relevant equations of mo-
tion here, we pause to consider the observables of our model
in more detail. Apart from the usual expectation values of the
coordinate and its conjugate momentum,

e ] a
o(1)=(#), w<r>=<w>-< zd¢>, ©)

we will be particularly interested in expectation values of
functions of ¢,

0.n=(0(e0= [ deptenoternen. ©

i.e., fluctuation variables. By Fourier transformation we ob-
tain
o o d(l)’ , ) ,
Oy(@)=| do| S—ile;0)0(e)y*(¢;0"~w).
(7
Thus, we have to find the spectrum of frequencies in

oo 4

w
p(cp,sv;w)Ejﬂﬁw(w;w')w*(ww’—w% (8

which is the Fourier transform of a diagonal element of the
density matrix which pertains to the pure state |(¢)) (coor-
dinate representation). For simplicity we do not consider the
off-diagonal density matrix elements at present, which would
be needed to evaluate more general observables (O(,)).
Clearly, the diagonal elements p(¢,¢;w) yield a frequency
correlation function defined at each point ¢, which presents
a simple and particularly useful example out of a large vari-
ety of higher order correlation functions.

In order to illustrate the information provided by the fre-
quency correlation function, we evaluate it formally in the
full quantum case. Using the fact that the spectrum of the
double-well Schrodinger equation (3) corresponds to discrete
stationary bound states,

(@)= b, (@)e'n, (9)
gives
PN @i0) =27 (@) S(w—w,). (10)

A general pure state is
W ;0)=2m2 ¢,b,(0) 0= ,). (1
Then, we obtain from Egs. (8) and (11)

P(%@?w)zz Mnn'(@)5(w__wn+w;,1)> (12)

n,n

’
n’

i.e., a spectrum of discrete lines arising at all w=w,— w
with a strength

Mnnl((p)EZ’ﬂ'C”C;k,¢”((P)¢:<,(QD):M:<,”. (13)

The strength matrix M is Hermitian and time-independent,
implying constant real eigenvalues. In particular,

@, p;w=0)= constX TrM(gp)Zf ) dtp(@:t) = (@3t)

= constX27Y, |c, | ¢, ()| (14)

Thus, the strengths of the lines depend on the actual state
under consideration, i.e., the amplitudes ¢, , and are com-
pletely determined by the initial condition, ¥(¢;t=0),
whereas their positions are given by the distribution of the
energy level spacings of the system. We will employ the
frequency correlation function as a diagnostic tool in Sec. IV
to monitor the onset of semiquantum chaos, in which case
the frequency correlation function becomes increasingly
noisy with its discrete line character eventually disappearing
completely.

Next, we turn to the derivation of appropriate semiquan-
tum equations of motion. The TDHF or Gaussian variational
approximation can be easily obtained with the help of
Dirac’s variational principle [7]. The latter can be stated as
follows:
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5I;Eﬁ¢] —0 for all ¢ with (g|y)=1 (15)
and
M= [l -y, e

i.e., requiring the effective action I' defined in Eq. (16) to be
stationary against arbitrary variations of the normalized wave
function, which vanish at t— * o, is equivalent to the exact
Schrodinger equation (3). With the variational principle one
can solve the quantum mechanical time-evolution problem
approximately by restricting the variation of the wave func-
tion to a subspace of the full Hilbert space.

In the following we work with properly normalized
Gaussian trial wave functions,

Po(e:)=QuG(1) M exp{—[G (1) —io(t)¢]
X[=g()P+im(t)[e—@(1)]}, (17)

which leads to the TDHF approximation via the evaluation
of the effective action, Eq. (16), i.e., by performing simple
Gaussian integrations. Thus, we obtain

1
rwc]=fdr[%¢~5ﬁ2—u<¢>+ﬁ

) 1
ocG—20°G— §Gﬂ

I 3 R
- 2—!v"¢()G}—4—!ﬁzv""(¢)G“], (18)

with v”(@)=— u?+ \@%, v"”($) =N\ from Eq. (2). In Eq.
(18) we inserted the appropriate factors of A which exhibit
the classical and semiquantum contributions to the effective
action. Clearly, the dynamics is now described by the four
time-dependent functions which parametrize the trial wave
function, Eq. (17). Here ¢ and G play the role of the effec-
tive coordinates, while 7 and o present the conjugate mo-
menta. This is further illustrated by the expectation values

d
(e)o= (1), <—iE>G=fT(I), (19)

and

(@)= (N +G(1), (id)=m()e(1)=a(1)G(1),

(20)

which are calculated using Eq. (17). Furthermore,
_ R 1 2
(o= @) 2(m2)— 7112 =G 12 4—G'1+4azG

1 1
=1+ 2912
FL1+(406G)7] 3
@n
which demonstrates the uncertainty relation in the present

context. Minimum uncertainty coherent states yield the
lower bound on the right-hand side of Eq. (21).

Finally, the semiquantum equations of motion are ob-
tained as the Euler-Lagrange equations for the effective ac-
tion, Eq. (18), by independent variations with respect to ¢,
7, G, and o

o=, (22)

= 1y = ﬁ me —~
T==v'(¢)= 7v"(®)C, (23)
G=40G, (24)
A 22+1G—2 1 ne = h "(D)G 25
o=-20"+g Fv (@)= 7v"(@)G,  (25)

with v/ (@)=—u?p+ N/3!, v ($)=N¢, and v", v as
given after Eq. (18). Several remarks are in order here.

(i) Equations (22)—(25) present a coupled set of four au-
tonomous first-order nonlinear differential equations, which
explains the potential for semiquantum chaos of the double-
well oscillator, for example.

(ii) Equivalently, by eliminating the momenta 7 and o,
one obtains two coupled second-order equations, which bear
some characteristic resemblance to Egs. (16) in Ref. [2], i.e.,
the particle production problem mentioned in the Introduc-
tion.

(iii) It follows from Eq. (18) that only Egs. (22) and (23)
survive the simple-minded classical limit with #2—0; thus,
Egs. (24) and (25) present the dynamics of an additional
effectively classical DOF, which arises through the semiclas-
sical approximation of (Gaussian) quantum fluctuations.

The TDHF approximation in the form of Egs. (22)—(25)
was previously studied for various quantum mechanical
models in Ref. [14]; the potential for semiquantum chaos,
however, has only recently been noticed based on a deriva-
tion via Ehrenfest’s theorem [3]. Note that the above equa-
tions of motion decouple and can be solved analytically, of
course, in the harmonic limit, v = const, v"" =0.

To conclude this section, note that the frequency correla-
tion function, Eq. (8), in TDHF approximation is given by

ple,0;0)= f dte” ' (27G)?exp{—5G [~ ¢]*},
(26)

using Eq. (17). Clearly, the magnitude of G determines the
admissible amount of quantum fluctuation around the classi-
cal expectation value ¢, cf. (19), such that the integrand in
Eq. (26) is not negligible. Thus, the relevant contributions to
p(p,@;w) come from those parts of a semiquantum trajec-
tory of the system, i.e., {¢(7),G(r)}, which are sufficiently
close to the point ¢ and have a time dependence character-
ized approximately by the frequency w.

III. ENERGY, EFFECTIVE POTENTIAL,
AND INSTABILITIES

The purpose of this section is to report some analytical
considerations, which may help to better understand the dy-
namics of the semiquantum equations of motion, Egs. (22)—
(25).
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FIG. 2. The effective semiquantum potential,
Eq. (28), for ¢=¢=0 (V is symmetric in ¢).
The inset shows the detailed shape of the con-
tours close to the positive minimum (i.e., fixed
point) of V.

o

To begin with, the Hamiltonian contribution to the effec-
tive action, cf. Egs. (16), (18), together with the second of
Egs. (20), yields the conserved total energy for our nondis-
sipative model. The resulting expression is still a rather com-
plicated function of ¢, 7, G, and o. For simplicity, we
choose initial conditions with zero momenta in the follow-
ing, m(t=0)=0(t=0)=0. Then, evaluating the total en-
ergy, Ey, at the minimum of the classical potential, for ex-
ample, we obtain

1 3 upt 1
EO(G)=§G*‘—5“TWLMZGJrg)\Gz~ 7

With all other parameters kept fixed, the initial energy or,
equivalently, the initial value G(#=0) is the relevant control
parameter for our model.

Furthermore, comparing the initial value Ey(G) with the
total energy evaluated at any later time, we obtain a simple
measure for the numerical accuracy of the simulations to be
discussed in Sec. IV.

Second, in analogy to a classical system in two dimen-
sions (“‘coordinates” ¢ and G), we consider the effective
potential which is defined as the total minus the kinetic en-
ergy, i.e., V(¢,G)=E(@,G;m=0=0), in terms of the total
energy. Thus,

1 1
V(e,G)=v(e)+h gGil + '2‘70"(<Z>)G

3 _
+ A (§)G, (28)

-10
-16
(A
P cnmm—y
6 8 10 12

14

which shows the classical contribution plus quantum correc-
tions. In Fig. 2 we present a contour plot of equipotential
lines for the effective potential. Its most interesting feature is
the valley in the potential energy surface which leads to a
“saddle point region” (cf. below) separating the two effec-
tive potential wells. Thus, our semiclassical potential shares
some similarity with the classical ‘“‘demonic potential” stud-
ied in Ref. [9]. By analogy, we expect also in our case energy
dependent transitions between regular and chaotic motion in
the effective potential, which will be confirmed in the next
section.

Clearly, by opening the possibility to move into the semi-
classical G direction, our system can roll around the hill at
@=G=0, i.e., around the equivalent of the classical local
maximum of the potential at ¢=0. This “‘roll around” rep-
resents the quantum mechanical tunneling through the given
potential barrier in the semiclassical TDHF approximation.
Note, however, that the limits G—0 and #—0 do not com-
mute in Eq. (28) due to the singular term ~#/G, which
makes the proper classical limit a nontrivial affair here as
well as in the equations of motion, Egs. (22)-(25).

Next, we observe that there are five fixed points of the
flow described by Egs. (22)—(25). They correspond to the
three extrema of the classical potential and are determined in
the semiquantum case by the conditions ¢=7=G=06 =0.
These, by the equations of motion together with Eq. (28),
become m=o0=09V/dp=09V/dG=0, in analogy to the clas-
sical case.

A first solution corresponding to the center of the saddle
point region of the effective potential, cf. Fig. 2, is given by
=0 and G=f(2u%/3\,1/4\) with
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fla,b)=a+(b+a*>+[b*+2ba’]"?)13
F(b+a®—[b2+2ba’]V2)153.
For u?=1.0, A=0.06 we find G~33.341. However, this

turns out to be a small dip in the potential energy surface,
since there are two fixed points close by. They are given by

6 1> 2 2u? @
n—+| ——— 1 R —
1) _( N 3G> with G 3N 1+2 cosz

2#2 31—-1
cosa—l—[SA(x—) .

For the above parameter values we find @~ *0.106,
G~33.330. Finally, the fixed points corresponding to the
minima of the two deep effective potential wells are given by
the previous formulas for ¢ and G, however, replacing
a—a—r in the equation for cosa only. Thus, we obtain
here ¢~ *=9.947, G~0.355. Naturally, one may expect the
trajectories to behave regularly, if they are initiated with suf-
ficiently small momenta (77, 0) sufficiently close to the fixed
points which correspond to (local) minima of the effective
potential.

Furthermore, note that the number of fixed points has in-
creased by two as compared to the classical limit. We con-
jecture that the number of fixed points would keep increasing
if we would include corrections of higher order in # into the
effective action, Eq. (18), and therewith into the equations of
motion. Equivalently, one would have to go beyond the
Gaussian ansatz for the wave function, Eq. (17), which will
be further discussed in Sec. V.

Finally, we turn to the investigation of instabilities arising
in the equations of motion, which might signal the onset of
chaotic behavior. It is well known that ordinary perturbation
theory with respect to the nonlinear coupling, i.e., A\ at
present, would not give the irregular break-up of KAM tori,
etc. for our conservative dynamical system generated by the
TDHF approximation [1,11]. Therefore, we eliminate the
momenta (7,0) from Egs. (22)-(25) in order to rewrite
them in second-order form and, thus, to expose the analogy
to coupled (potentially unstable) oscillators. We obtain from
Egs. (22) and (23):

¢+ mepg=0, (29)

with

1
NGZ+ =NG— u’. (30)

1
31 2

From Egs. (24) and (25) one finds

L 1 G*+1

G+MeffG:§‘—5_’ (31)
with

M2 =N +NG—2u”. (32)

Obviously, both oscillators can become unstable due to ex-
ponentially growing modes for a finite range of (initial) val-
ues for ¢ and o. Both effective mass squared terms become
negative for

2

21 _

Note that the repulsive term on the right-hand side of Eq.
(31) keeps G>0 at all times. Thus, there is a region in the
positive @-G half-plane, where we expect trajectories with
slightly different initial conditions (keeping for simplicity
T=¢=0=G=0 initially) to diverge exponentially.

However, Eq. (33) seems to provide at best a criterion for
the local sensitivity to initial conditions. In particular, for
initial conditions corresponding to high energy, i.e., suffi-
ciently small G(r=0) according to Eq. (27), one may expect
the trajectories to behave rather regularly, since the unstable
region in the ¢-G plane by Eq. (33) becomes a smaller and
smaller fraction of the accessible one with increasing energy.
These effects will be seen in our numerical results to be
presented in the following section.

IV. NUMERICAL RESULTS

In this section we present the results of numerically study-
ing the solutions of the semiquantum equations of motion,

“Egs. (22)—(25), for a variety of initial conditions. However,

we always fixed #=0=0 initially and chose G=0.1 to-
gether with various values for ¢ to represent initial configu-
rations with varying total energy, E(m=0=0)=V(¢,G);
cf. Eq. (28). Generally, we did not explore the full set of all
initial conditions at a given energy, which would require
much more extensive numerical calculations.

To begin with, we show in Fig. 3 the results for two
energies which are very close to the absolute minimum,
E, .., ~—242948; E,,;, is obtained at the minima of the ef-
fective potential (¢=*x9.947, G=0.355) discussed previ-
ously. Thus, we observe in the left column of Fig. 3, which
pertains to the lowest energy, a rather simple regular motion
characterized by the basic oscillator frequency wy= V2 and a
second frequency at twice this value. Note that the value of
w, is obtained by expanding the classical potential, Eq. (2),
around one of its minima and identifying the coefficient of
the harmonic term, i.e., %wg=,u,2= 1.0, at present. Together
with the frequency correlation function, cf. Egs. (8), (12),
and (17), we present two Poincaré sections in the phase
space planes of the two conjugate pairs of variables, {7, ¢}
and {o,G}, respectively.

Furthermore, a full trajectory is portrayed in the last row
in Fig. 3. Clearly, a slight increase of the energy, with the
corresponding results presented in the second column here,
immediately leads to the admixture of higher multiples of the
basic frequency wg. In this case, the Poincaré sections still
look fairly simple, but the picture of a trajectory already
shows a rather convoluted structure. Obviously, the increas-
ing complexity of trajectories can be expected to be reflected
in the more and more detailed fine structure of the frequency
correlation function as the energy is increased further.

Before we proceed, a few remarks are in order here con-
cerning the numerical solution of the equations of motion
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and the evaluation of the frequency correlation function, in
particular.

We have used MATHEMATICA [15] to solve Egs. (22)-(25)
numerically. In particular, we employed the ND solve func-
tion which iteratively and adaptively solves the equations to
arbitrary accuracy (up to the working precision of the com-
puter, of course) which we chose to be 10 digits in the final
solution. The solutions for various initial conditions were
calculated for varying lengths of time depending on the com-
plexity of the trajectory. Thus, the results in Fig. 3 were
obtained with 200 time units (A=c=1) while one of the
Poincaré sections in Fig. 4 (see below) was obtained from a
solution of length 10 000 time units (the longest of our tra-
jectories).

As mentioned earlier, one measure of the accuracy of our
solution is to compare the total energy E at the beginning
and ending of each trajectory. For E= —1.2661 initially and
the initial conditions stated above, we obtain E= —1.2660
after 10 000 time units.

Evaluating the numerical solutions to Egs. (22)—(25) at
discrete time intervals, we find the frequency correlation
function by discrete Fourier transform, i.e., by replacing the
integral in Eq. (26) with a sum over the discrete time inter-
vals of the trajectory. For our purposes it was sufficient to
take the discrete time interval Af=0.5 which is more or less
arbitrary. It is sufficient in the sense that the discrete nature
of p(¢@,p;w) is clearly evident, or not, depending on the

particular value of the total energy and the initial conditions.
Tests with smaller values of Az on selected trajectories pro-
duced the same low frequency spectrum.

The length of the trajectories, 7, used to calculate
p(@,p;w) was also somewhat arbitrary. 7 must be long
enough to capture the basic low frequency structure. Again,
our objective was to observe the qualitative behavior of the
frequency correlation function rather than make a precise
determination of its content, and we found that trajectories of
length 200 time units were sufficient for this purpose. For the
regular trajectories, increasing 7 did not alter the frequency
spectrum, and for the trajectories that exhibited chaotic char-
acter, increasing the trajectory length did not change the
overall character of the frequency correlation function.

Finally, we note that p(¢,¢;w) as calculated above is
normalized to N times its continuum value, Eq. (26), where
7=NAz¢.

To construct Poincaré sections, we simply evaluated each
solution for a particular total energy at an arbitrary fixed
value of one of the four variables while the others were al-
lowed to vary. In practice, a small variation in the fixed DOF
was allowed to reduce the number of evaluations of the so-
lution, i.e., our two-dimensional slice of phase space had a
small but finite thickness. Also, to observe the characteristic
phase space filling of the chaotic trajectories, 7 was in-
creased to as much as 10 000 time units.

Next, we present in Fig. 4 characteristic Poincaré sections
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for various higher energies. At E= — 12.44 (initialized with
G=0.01) we still observe regular behavior, which is also
obvious from the frequency correlation function (not shown).
Notice that the trajectory is still completely confined to the
right effective potential well, cf. Fig. 2, where it was initial-
ized. Clearly, one expects that different initial conditions at
the same energy would shift this Poincaré section with re-
spect to the coordinate axes and distort it as well. At
E=—6.61 the structure of the trajectories becomes much
more complicated with the Poincaré section showing indica-
tions of breakup of KAM tori. This is better represented in
the frequency correlation function, see Fig. 5, where there
are still outstanding discrete lines. However, they appear al-
ready considerably shifted with respect to (integer multiples

of) wg. Furthermore, there is now a broad low-level back-
ground at fractional frequencies corresponding to the rather
spiky character of the trajectory itself. From the Poincaré
section it is obvious that the trajectory begins to run into the
valley of the effective potential, cf. Fig. 2, which is the semi-
classical equivalent to (attempts at) quantum mechanical tun-
neling to the other potential well (¢<<0).

At E=—1.266 and E=15.6 the Poincaré sections in Fig.
4 both show the “stochastic sea outlining islands of stabil-
ity”” which is the typical feature of irregular motion resulting
from the breakup of KAM tori [1,11]. Note that the lower
energy here still corresponds to trajectories which classically
could not get to the other side of the barrier at =0 [height
v(0)=0], i.e., they have to tunnel there. At E=15.6 trajec-
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0 2 4 6 8 10 12 FIG. 5. Frequency correlation functions at
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as broadband noise in the expected line spectrum.
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E=-3.68601

FIG. 6. The nonlinear resonance trjectory discussed in the text.

tories run well above the classical barrier and would yield
regular motion in the classical limit. However, both cases
show semiquantum chaos as a result of quantum corrections.

Finally, in Fig. 5 the frequency correlation function is also
shown for two other energies, E=—3.686 and E=201.8,
which reveal further interesting features of our system. First,
as expected, in the high energy limit the behavior becomes
regular again, since the effective potential essentially be-
comes a single well with a perturbation of decreasing influ-
ence at the center. This is obvious from the appearance of the
frequency correlation function. Presumably, its spectrum
could be related to the quantum mechanical energy levels of
the anharmonic ¢* oscillator relevant here at high excitation
energy.

Second, and quite surprisingly indeed, we find at
E = —3.686 regular behavior with a large number of discrete
lines in the spectrum, which are rather evenly spaced and of
comparable strength. It seems to originate from a resonance
phenomenon leading to a fairly simple closed trajectory con-
fined to one well, see Fig. 6. In distinction to the cases of
Fig. 3, where the motion results from the quasilinear super-

position of a few harmonic frequencies, at present the trajec-
tory appears simple despite being fully nonlinear. This or-
derly behavior arises at an energy which lies in between
cases with much more irregular if not fully chaotic trajecto-
ries, cf. Fig. 5. We did not yet investigate in full detail the
sensitivity of this phenomenon to changes of the energy con-
trol parameter, etc. In particular, it is an open question
whether other regular energy values like this one exist within
the irregular intermediate energy regime. Preliminary inves-
tigations, however, show that this “‘resonating trajectory” is
even sensitive to where precisely it is initiated on an equipo-
tential contour, cf. Fig. 2. Presumably, we encounter a re-
gime with stable KAM tori side by side with irregular do-
mains [1,11], which is already indicated by the Poincaré
sections in Fig. 4.

The results presented here naturally raise a number of
more general questions. They will be discussed in the follow-
ing section.

V. CONCLUSIONS

Presently, we have been studying semiquantum chaos in a
simple one-dimensional double-well oscillator model. In the
Introduction we explained the motivation for this and related
studies by field theory considerations and nonrelativistic
many-body problems [2,4,6,8]. In this context our present
work presents first steps towards a more detailed understand-
ing of those more complicated systems and their behavior in
the semiclassical regime, in particular.

Our work is based on the simple observation that a semi-
classical description (employing the Gaussian variational
principle or the TDHF approximation in our case, cf. Sec.
ITI) necessarily involves the introduction of additional de-
grees of freedom beyond the classical ones, which may de-
fine the model. The corresponding additional coordinate and
conjugate momentum variables are related to quantum fluc-
tuations of the classical ones, i.e., they represent correlation
functions of varying order (cf. below) in the quantum me-
chanical sense [3]. The classical and nonclassical degrees of
freedom are governed by a coupled set of first-order autono-
mous differential equations, cf. Eqs. (22)—(25). They are
necessarily highly nonlinear, which to a major extent is the
case independently of the particular dynamical model.
Herein we find the potential for deterministic semiquantum
chaos in this effective nondissipative Hamiltonian system.

Our numerical results presented in Sec. IV confirm the
above considerations, in general. In Sec. III we argued that
the total energy in our model, as determined, for example, by
the parameters of the initial state wave function, cf. Eq. (17),
serves as the control parameter. Depending on the energy we
find regular and chaotic trajectories as solutions of the semi-
classical equations of motion. Besides Poincaré sections we
mainly employed a suitably defined frequency correlation
function, cf. Egs. (8) and (26), which is related to the density
matrix of the system to monitor its behavior. Here the tran-
sition to chaos could be expected to show up as a drowning
of the discrete line structure deduced in Sec. II in a rising
broadband noise. This was clearly observed in the numerical
results, see, e.g., Fig. 5. However, quite surprisingly we
found that the behavior of the system as a function of the
energy control parameter changes in a rather complex way.
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Apparently, regular and irregular regimes alternate with each
other, where only the simplest cases (low and high energy
limits) can be easily understood. The simple-minded stability
analysis in Sec. IIT allows us to outline qualitatively some
regime of irregular behavior, but is quantitatively not suffi-
cient to point out more of the detailed structure as a function
of energy.

Clearly, our numerical studies show that there is room for
more surprises in the behavior of the system depending on
the control parameter. Furthermore, we did not fully explore
the phase space of our system at a given energy: Are all
initial conditions equivalent in that the corresponding trajec-
tories are either regular or irregular? These problems, being
intimately related to the question of ergodicity in the semi-
classical model, can only be addressed through more exten-
sive numerical work, which is beyond the scope of our
present paper. Similarly, we did not investigate the nature of
the transition to chaos in this system, nor did we look into
details of the control parameter dependence of the frequency
correlation function spectra.

However, our results together with the above consider-
ations also point towards several issues of more general in-
terest, which we discuss in the remaining part of this section.
It is convenient to introduce a formal representation of the
exact wave function and Schrodinger equation for any quan-
tum mechanical system which generalizes the Gaussian an-
satz and variational equations of motion, Egs. (17) and (22)-
(25), respectively. We rewrite the wave function,

Y, =expf(x,)=exp 2 f(1)x". (34)

This ansatz, of course, can only be considered as formal,
since we do not know how to work out the normalization
condition,

1=f dxzp*z,b:f dx exp{2 Ref(x,t)}=F[Ref,(1)],
(35)

in general. Nevertheless, pretending we know the highly
nonlinear functional F, we obtain a representation of the
exact Schrodinger equation, cf. Eq. (3), as an infinite autono-
mous set of coupled first-order differential equations,

) 2-1 i F

ifo=——5t5 % (36)
. 3.2

if1=—7f3+a, (37)
. 4.3

ifp=— Tf4+b, (38)
. 5-4

if3=_7f5+c’ (39)
. 6-5

ify=— Tf6+d’ (40)

THOMAS C. BLUM AND HANS-THOMAS ELZE 53

. +2)(n+1
T AL AR (1)

where we assumed for definiteness a simple polynomial po-
tential, v(x)=ax+bx>+cx>+dx*. Several observations
seem worth mentioning here.

(i) The above exact representation of the full quantum
dynamics is not limited to one dimension and can be ex-
tended to field theory using the functional Schrodinger pic-
ture, cf. [6,7], for example. However, the power series an-
satz, Eq. (34), is not general enough or the most convenient
one to cover all interesting cases and is used here only for
heuristic reasons.

(ii) There is an essential nonlinearity due to the normal-
ization condition which, however, appears only in the first of
the infinite set of coupled equations.

(iii) Different polynomial type interactions enter the equa-
tions as different constant parameters only.

Based on these observations we conjecture the following.
Any finite truncation of sufficiently high order (n<N) in
such a nonlinear expansion scheme for the full quantum dy-
namics, even of a classically regular system, may lead to
semiquantum chaos (in the sense presented in this paper)
depending on the energy control parameter. In general, we
expect additional classical conservation laws to lead to a
higher dimensional control parameter space. Since the one
and only nonlinearity originates from the wave function nor-
malization condition, cf. Egs. (35) and (36), and enters the
flow equations in a completely different manner than any
interactions, we expect some still to be specified universality
of the phenomena of semiquantum chaos.

Finally, knowing that any exact wave function solution of
the linear Schrodinger equation cannot itself behave chaoti-
cally as discussed in Sec. II, we are led to speculate that the
infinite number of linearly coupled correlation degrees of
freedom represented by Egs. (36)—(41) effectively restore the
linear behavior of the full quantum dynamics. The latter here
was only undermined by a single nonlinear constraint enter-
ing as a scale independent nonlinear coupling into one of the
flow equations!

This brings us to the final topic of our discussion. In view
of the linear character of the Schrodinger wave equation and
particularly for classically regular systems one might be
tempted to consider semiquantum chaos as a spurious effect
caused by a truncation of the full quantum dynamics as de-
scribed above or any other bad approximation thereof.

First of all, to illustrate the quality of the time-dependent
Hartree-Fock approximation we include here Fig. 7 showing
some typical comparisons between TDHF results and those
of exact solutions of the Schrodinger equation for given ini-
tial conditions. Overall the expectation value of the position
of the wave packet, for example, is always well described for
sufficiently short times. Here the scale should be set by the
characteristic time for the quantum mechanical spreading of
the initial wave packet. Clearly, this has to depend on the
energy at present. Even the long-time behavior is qualita-
tively reproduced rather well in Fig. 7, no matter whether the
TDHEF trajectories are regular or chaotic at a particular en-
ergy. There is one notable exception here at E= —1.266,
where TDHF for the chosen initial conditions is fully tunnel-
ing by a “roll-around” as discussed in Sec. II, whereas the
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FIG. 7. Comparisons between exact solutions of the time-
dependent Schrodinger equation (full lines) and TDHF results
(symbols) at various energies. Shown here is the expectation value
of the position of the particle, which is initially a Gaussian wave
packet.

major part of the exact wave packet stays is the initial well
for long times. Obviously, TDHF misses some of the inter-
ference structure of full quantum mechanics. For further
comparisons of TDHF and exact results in different quantum
mechanical models we refer to Ref. [14].

In any case, however, one may argue that for a closed
system the full quantum description is always better than any
approximation. Thus, the way out of this apparent no-go situ-
ation, in order to establish the physical relevance of semi-

quantum chaos, is to allow for dissipative effects. Necessar-
ily, one has to consider the interaction of the quantum system
under study with its environment. In this way, the observa-
tion of semiquantum chaos is tied to the identification of
suitable open quantum systems which through interactions
with their decohering environment [16] are driven into the
semiclassical regime.

Various steps in approaching a physically relevant dy-
namically enforced classical limit (not naively setting
fi=~0) have been made [6,12,17,18], ranging in context from
cosmology through strong interactions, questions of founda-
tions of statistical mechanics, and the interpretation of quan-
tum mechanics. Presently, with the examples discussed in the
Introduction in mind, it seems most relevant to find systems,
e.g., in solid state physics (“‘quantum dots” [19]), where
environment-induced quantum decoherence and conse-
quently semiquantum chaos become experimentally acces-
sible.

Based on the example treated in Ref. [6], a quantum par-
ticle showing essentially classical behavior due to its inter-
action with a suitable quantized radiation field, the following
model suggests itself for further study: the double-well os-
cillator governing a quantum particle coupled to a decoher-
ing radiation field. Before any detailed results, it would be
interesting to see the effect of a deliberately chosen environ-
ment on the relevant set of flow equations, such as Egs.
(36)—(41) above. We plan to address some of these fascinat-
ing problems in a future publication.
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